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Refinement of twinned data

Twinning is a frequently occuring phenomenon
Standard ML target functions are inappropriate
LS target however available
What about map coefficients?

Feedback
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Refinement of twinned data

Data is twinned as follows:

J1 = (1 − α)I1 + αI2

J2 = (1 − α)I2 + αI1

in matrices:
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
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Refinement of twinned data

Algebraic detwinning of data is straightforward


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I2
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 =
1

1 − 2α





(1 − α) −α

−α (1 − α)
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





J1

J2





Detwinning is unstable when α close to 0.5.
Detwinning not possible when α is 0.5.
One can end up with negative intensities
What to do about experimental uncertainty?
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Refinement of twinned data

If no experimental errors were present, twin refinement
would be same as normal refinement
The trick is to introduce experimental errors in a
suitbale way.
There are two ways in which one can introduce
experimental errors
A small excursion is made to elucidate the thought
process I went through myself.
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A short excursion, I

An observed intensity has an associated standard
deviation
These two numbers are usually interpreted as
parameters in a (approximately) Gaussian distribution
of the error free intensity

P (Itrue|Iobs, σobs) = C exp

[

−
(Itrue − Iobs)

2

2σ2

obs

]

The normalisation constant C is obtained by
integrating over the domain on which the random
variable is defined: [0,∞)
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A short excursion, II

Apply transformation: F 2

true
= Itrue

The associated Jacobian is : 2Ftrue

one obtains

P (Ftrue|Iobs, σobs) = 2FtrueC exp

[

−
(F 2

true
− Iobs)

2

2σ2

obs

]

If desired, a Gaussian distribution may be fitted to this
function
The mean of this gaussian is than equal to the
maximum likelihood mestimate of Ftrue
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A short excursion, III

Call the MLE F̂true

The inverse of the square root of the negative second
derivative of the log likelihood function at the MLE is
equal to the standard deviation when fitting a Gaussian

F̂true =

√

Iobs

2
+

1

2

√

I2

obs
+ 2σ2

obs

σF̂true
=

σobs

2(I2

obs
+ 2σ2

obs
)1/4
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A short excursion, IV

Note that negative intensities do not form a problem
The procedure is similar to the truncate procedure.
Truncate uses a Wilson prior, here a uniform prior is
used.
Truncate uses mean intensity rather than maximum
likelihood estimate of amplitude.
Use the –massage-intensities option in
iotbx.reflection_file_converter
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A Gaussian model, I

We will use the same approach as above, but for
twinned data
If the errors between two twin related intensities are
independent, one can write

P (I1, I2) = C exp

[

−
(J1 − Io1)

2

2σ2
1

−
(J2 − Io2)

2

2σ2
2

]

J1 = (1 − α)I1 + αI2

J2 = (1 − α)I2 + αI1
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A Gaussian model, II

Convert to amplitudes

P (F1, F2) = 4F1F2C exp

[

−
(J1 − Io1)

2

2σ2
1

−
(J2 − Io2)

2

2σ2
2

]

J1 = (1 − α)F 2

1
+ αF 2

2

J2 = (1 − α)F 2

2
+ αF 2

1
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How does it look?

Io1 = 3.2

Io2 = 1.2

σo1 = 0.8

σo2 = 0.8

α = 0.45

Detwinned intensities: 1.22 & -0.78
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How does it look?
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How does it look?

When things are ’nice’, the MLE of a detwinned
intensity pair is approximately equal to the algebraic
detwinned intensities.
No negative detwinned intensities possible
A (reasonable?) Gaussian approximation can be
made.
An estimate of the variance/covariance is obtained
from the derivatives of the log likelihood function in ’at
the detwinned’ amplitudes.
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Likelihood based twin refinement

A likelihood funtion for twin refinement can be derived:

P (Fo1, Fo2) =

∫

∞

0

∫

∞

0

P (F1|Fc1)P (F2|Fc2)P (F1, F2|Fo1, Fo2)

This is derivation is analogous to the derivation of
MLF1
If all densities are approximated by Gaussians and the
integration limits are expanded to −∞, an expression
in closed form is obtained.
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Likelihood based twin refinement

Gaussian approximations for P (F1|Fc1) can be equal to
the approximation made in CNS (method of moment)
A Gaussian approximation of P (F1, F2|Fo1, Fo2) has to
be made only once for a fixed twin fraction. This can
be done numerically. I wasn’t able to formulate an
analytic solution.
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Another route

Another route can be followed to obtain a likelihood
function
Get distributions in intensities: P (F1|Fc1) → P (I1|Ic1)

Introduce twinning: P (I1|Ic1)P (I2|Ic2) → P (J1J2|Ic1Ic2)

Introduce experimental errors by a 2 d convolution.
Various domain issues make life less simple
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Map coefficients

To compute a map, E[Fo,untwinned is needed.
For untwinned data, this is equal to mFo

When twinning is involved, we effectively need a
detwinning step
Currently, I use Sheldricks proportionality rule

F 2

o1,ut =
(1 − α)Fc1

Ic1

Io1 +
αFc1

Ic2

Io2
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Map coefficients

Not sure what the untwinned observed amplitude is
could use the expected Fc given model and
observation
Use σA estimation on detwinned data without model
info to avoid bias issues
difference maps?

. – p.21/21


	
	Refinement of twinned data ,,,
	Refinement of twinned data ,,,
	Refinement of twinned data ,,,
	Refinement of twinned data ,,,
	A short excursion, I,,,
	A short excursion, II,,,
	A short excursion, III,,,
	A short excursion, IV,,,
	A Gaussian model, I,,,
	A Gaussian model, II,,,
	How does it look?,,,
	How does it look?,,,
	How does it look?,,,
	How does it look?,,,
	How does it look?,,,
	Likelihood based twin refinement,,,
	Likelihood based twin refinement,,,
	Another route ,,,
	Map coefficients
	Map coefficients

